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ABSTRACT

Th_; paper d_lcuu¢o resource utilization omee the life

cycle Of ,oflwor¢ dcuelopmcnt, and d..cuuee the role
Mot the current "wo|cr/all model " plal_ in the aCtUal

software life cycle. The effects of protot_inf arc
meourcd with respect t0 the life cycle model

Software production m the NASA environment wut
analyzed to measure _esc differences. The data col.
letted pore thirteen dt_¢reng projecM and one proto-

type development u_re collected 6g the Soflw_e F.n-
_necring Laboratory at NASA Goddard Space Flifht

Center and onalvzed for mirador,ties and differences.
The results indicate that the _ateryall model iJ not

_ery reolMticin practice,and thato prototypedevelop-

ment follows a eimdar lifecycle aa • production

s_lstcm..olthough, for this prototype, t_lsues /"be system
design and the user interface took precedence over ;'-
sues such a.scorrectness and robuatneesof the reoult-

ing al/otem.

KEY_ORDS: Life cycle. Measurement, Prototyping,

Resource utilization,Waterfall chart

I. Introduction

As technology impacts the way industry builds

software, there is increasing interest in understanding the

software development model and in measuring both the

process and product. New workstation technology, new

languages (e.g., Ada, requirements and specification

languages) as well as new techniques (e.g.,prototyplng,

pseudocode) are impacting how software is built which

furtherimpacts how management needs to address these

concerns in controlling and monitoring a software

development.

In this paper, data are first presented which analyze

several fairly large software projects from NASA God-

dard Space Flight Center (GSFC) and put the current

"waterfall" model in perspective. Data about software

e_ts. productivity, reliability,modularity and other fac-

tors are collected by the Software Engineering Labora-

tory (SEL], a research group consisting of individuals
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from NASA/GSFC, Computer Sciences Corporation. and

the University of Maryland. for research on improving

both the software product and the process for building

such software [SEt 82]. The Software Engineering

Labor_tory was estabfished in 1976 to investigate the

effectivene_ of software engineering techniques for

developing ground support software for NASA [BAS 78].

A recent prototyping experiment w_s conducted and data

were collected which compare this prototype with the

more traditional way to build software. The paper con-

cludes with comments on the role of prototyping a.s a

software development technique.

The software development process is typically

product-driven, and can be divided into six major life

cycle activities,each associated with • specific"end pro-

duct* [WAS 83, ZEL 78]:

(1) Raquirementl ph_e and the publication of a
requirements document.

(2) Desifn ph_e and the creation of a design docu-

ment.

(3) Code and Unit Test phase and the generation of
the source code library.

(4) System integration and tcsttn9 phase and the

fulfillment of the testplan.

(5) Acceptance t_st phase and completion of the

acceptance test plan.

(6) Operation and Maintenance phase and the
delivery of the completed system.

In order to present consistentdata across a large number

of projects, this paper only focuses on the interval

between design and acceptance test and involves the

actual implementation of the system by the developer

group.

In this paper, we will refer to the term aca_tl_ u

the work required to complete s specific task. For exam-

ple. the coding activity refers to all work done in gen-

erating the source code for a project, the design activity

refers to building the program design, etc. On the other

hand. the term phase will refer to that period of time

when a certain activity is supposed to occur. For exam-

ple, the Coding Phase will refer to that period of time
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during s software development when coding activities are

supposed to occur. [t is closely related to management-

defined milestone dates for • project. But durinf, this

period, other activitiesmay alsooccur.

I
I
I
IRZq_
I
I l

DESIGN

I I

CODE

I

INTEGRATION

i

ACCEPTANCE TEST

I i

OPERATION

I I

L_'ecycle Calendar Tim -->

Fi|ure i. Typic,,2 Li/e Cy¢lo

The waterfall model makes the assumption that all

activity of • certain type occurs during the phase of that

same name and phases do not overlap. Once a phase

ends, then the next phase begins. Thus all requirements

for • project occur during the Requirements Phase; all

design activity occurs during the Design Phase. Once •

project hu a design review and enters the Coding Phase,

then all activity is Coding. Since many companies keep

data based upon hours worked by calendar date, this

model is very easy to track. However, as Figure I shows,

activities ovedap and do not lle in separate phases. We
will give more data on this later.

2. The waterfall chart is all wet

In the NASA/GSFC environment that we studied,

the software llfecycle follows a fairly standard set of

activities[SEL 81J:

The reguiremen_ activity involves translating the

functional specification consisting of physical attributes

about the spacecraft to be launched into requirements for

a software system that is to be built.

The design activity can be divided into two subac-

tivitles: the preliminary/ design activity and the detaded

design activity. During preliminary design, the major

subsystems are specified, input-output interfaces and

implementation strategies are developed. During detailed

design, the system architectureis extended to the subrou-

tine and procedure level. Data structures and formal

models of the system are defined. These models include

procedural descriptions of the system, dataflow descrip.

Lions, complete description of all user input, system out-

put, and input-output files, operational procedures, func-

tional and procedural descriptions of each module, tad

complete description of all internal interfaces between
modules.

The Coding and Unit Test activity involves the

translation of the detailed design into a source program

in some appropriate programming language (usually

FORTRAN). Each programmer will unit test each
module/'or apparent correctness.

The STstem Integration and Test activity validates

that the completed system produced by the coding and

unit, test activity meets its specifications. Each module.

as it is completed, is integrated into the growing system

and integration test is performed to make sure that the

entire package executes u expected. Functional testing

of end-to-end system capabilitiesis performed according

to the system test plan developed as part of the require-
ments activity.

In the Acceptance Test activity, the development

team provides assistance to the acceptance test team,
which checks that the system meets its requirements.

Operation and Maintenance activities begin after

acceptance testing when the system becomes operational.
For flight dynamics software at NASA, these activities

are not significant to the overall cost. Most software pro-

duced is highly reliable. In addition, the flight dynamics

software isusually not mission criticalin that a failureof

the software does not mean spacecraft failurebut simply

that the program has to be rerun. In addition, many of

these programs {'i.e.,spacecraft) have limited lifetimesof

six months to about three years.

Table I presents the raw data on the fourteen pro-

jects analyzed in this paper. The thirteen numbered pro-

jects are all fairly large flight dynamics programs, rang-

ink in size from IS,S00 lines of FORTRAN code to 8g.513

lines of FORTRAN, with an average size of 57,890 lines

of FORTRAN per system. The average work on these

projects was 80.0 staff months; thus, all represent

significant effort.The last project listed in Table I -

FDAS - represents a prototype development and will be

discussed in more detail later.

In most organizations, phase data are collected

weekly so that they are the usual reporting mechanism.

However, in the SEL, activity data are also collected.

The data that are collected consistof nine possible activi-

ties for each component (i.e.,source program module)

worked on for that week. In this paper, these will be

grouped as Design activities,Coding activities(code

preparation and unit testing), Integration testing, Accep-

tance testing and Other. Svecific review meetings, such

as design reviews, will be grouped with their appropriate

activity (e.g., s design review is a design activity, a code

walkthrough is a coding activity, etc.). This allows us to

look at both phase and activity utilization.
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, PROJE_T SIZE AND STAFF.r.-"_'*,_
:PROJECT SIZE (LINES TOTA- [_.FORT STAFF-

b,q_fBER OF CODE 1 HOUR" MONTHS
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The resuRs of this e_n be briefly summarized by

Table 2. According to thls, in NASA, 22% of a project's

effort is during the design phase, while 49% is during

coding. Integration testing takes 16% while all other

activities tlke 12%. (Remember that requirements data

not being collected here. We axe simply reporting the

percentage of design, coding, and testing activities. A

significant requirements activity does occur.)

Design Code Int. Test. Other

, By phue 22 49 16 12

iBy activity 25 30 15 20 '

Table 2. Activities performed in each phase (by %)

However, actual activities differ somewhat from sim-

ply looking at effort spent between somewhat axbitrary

calendar dates set up months in advance. By looking at

all design effort across all phases of the projects, design

activity is actually 25% of the total effort rather than the

22% listed above. Coding is s more reasonable 30%

which meatus that the coding phase includes many other

activities. "Other" increased from 12% to 29%, and

include many time-consuming tasks that are not

accounted for by the uau sl life cycle. (Here, Other

includes Lcceptance testing, aa well as activities that tLke

s significant, effort but. see usually not separately

identifiable using the standard model. These activities

include meetings, training, travel, documentation, and

other various activities assigned to the project.)

The situation is actually more complex than shown

in Table 2. Although using Phase Date shows that total

design effort differs by only 3% from the design phase

e_on, the distribution of design activity throughout the

project is not reflected in the table. These data are

presented in Table 3.

[Design'[ C°de [ Int'Test I Accept'Test11 ' 50 I 20 _ 20 2

Table 3. Design Activity During Life Cycle Phases (by %)

As Table 3 shows, only S0% of all design work

occurs during the Design Phase and just under one third

of the total design activity occurs during the coding

per}od. Over one fifth (2_%+2%) of all des)gn occur3

during testing when the system is "supposal" to be

finished.

As to coding effort, Table 4 shows that while a

major part, or 70% of the coding effort, does occur dur-

in& the Coding Phase, almost one quaxter (16%+7%)

occurs during the testing periods. A_ expected, only

small Lmount of coding {7%) occurs during the design

phase; however, it does indicate that some coding does

begin on p_.s of the system while other parts are still

under design.

Table 4. Coding Activity during Life Cycle Phages (by %)

Similarly, Table 5 shows that significant integration

testing activities (about 34%) occur before the integra-

tion testing period. Once modules have been unit tested,

programmers begin to piece them together to build larger

subsystems.

I Des!gn [ Code ] lnt. Test I Accept. Test I] o j J 83 3

Table 5. Integration Activity during Life Cycle Phues

3. Prototyplnl[

A.s can be seen, pro,trammers readily flow from one

activity of a project to another--more like a series of

rapids and not as a discrete set of waterfalls. Any model

that does not reflect this cannot hope to accurately por-

tray softwaxe development. Boehm has proposed a spiral

model (BOE 86] of software development which takes

some of this into account. In addition, the concept of

prototyplng has been proposed _ an alternative concept.

The remainder of this paper will addrem the proCotyping

issue.

The current model of software development is

becoming even more complex. As new techniques are

developed, how do they fit into the life cycle? For exam-

ple, pseudocode is often written to describe a design.

This pseudooode is often iterated in greater detail to

evolve into the source program. However, when does

pseudocode stop being design and when does it become a

source program? Prototyping is another technique which

doesn't fit into this model well. In a prototype, the
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developer builds some operational aspect of the system

and then evaluates the prototype with respect to some

criteria. Where does this coding and testing fit._ What

activity is this i• the overall life cycle?

At NASA, • prototype was developed to investigate

implementation stratt_ies for a new product. |a this sec-
tion, the role of the prototype wilt be described and the

resulting data collected from building the prototype will

be compared with the historical life cycle data presented

in the preceding section.

A prototype Flight Dynamics Analysis System

(FDAS) was implemented by NASA/GSFC. Data were

collected during the development of the system. For typ-
ical flight dynamics software, which NASA has consider-

able experience in building, prototyping would be of lim-

ited benefit due to significant knowledge of how previous

systems were built. However, in this case, FDAS was to

be • source code maintenance system to manage other

source code libraries. It would enable NASA analysts to

test new spacecraft orbit models by providing • human-

engineered common interface which could be used to

invoke other flight dynamics packages. Since it was

unlike previous NASA projects, and since NASA person-

nel had limited knowledge of exactly how to build this

system, FDAS was a good candidate for prototyping.

The goal of the prototype wes to understand the

problem domain better. As such, an early decision was

made to build the system with every expectation of

throwing it away. If part of the source program could be

transferred to the final system, then that would be

viewed as an unexpected bonus. After the prototype was

built, it would be evaluated and from this experience the

requirements for • production version of FDAS would be

developed. Therefore, the basic idea of the prototype

was to learn, and it fits into the life cycle as part of the

requirements phase of Figure 2.

This definition of prototyping differs from others

that view • prototype as a first release of a system. The

goal was clearly to be able to understand the problem

and not to generate useable source program.s. In another
study [BOE g4], prototyping was viewed as an |terative

process converging on the final product.

We viewed the prototype as part of the requirements

analysis of the problem. However, since the prototype

was to execute, it itself had a full development life cycle.

As Table I previously showed, since FDAS was almcet
34,000 lines of code and took •bout g3 staff months to

complete, it was a rather large project by itself.

FDAS was to be an interactive system. That meant

that the user interface was crucial. Because of this, it was

determined that the prototype should emphasize that

aspect of system design.

The prototype was built in FORTRAN for a DEC
VAX 11/780. In hindsight it is not clear that such an

implementation was the wisest. However, at the start,

the problem did not seem that complex, and personnel

experience and available hardwar_ and software lent

Requirements

(Prototype System)

Requirements

Design

Code & Test

System Test

Accept••cuTest

DESIGN

CODE i, TEST

SYSTEM TEST

ACCEPTANCE TEST

Figure 2. Prototype as part of Software LifeCycle

themselves to a FORTRAN implementation. Since the

goal was to give the user a taste of what services the

system would provide, • screen simulation applications

package (e.g., Rapid/Use [WAS 80[), a very high level
simulation, or a 4th generation language might have been

adequaxe.

The use of FORTRAN. however, did have some

benefits. For one. it gave the developers experience in

using FORTRAN in a type of text-processing application
for which they had little previous experience. One of the

reasons that the NASA group generally has high produc-

tivity is that they have had considerable experience in its

application area. By building the prototype in FOR-

TRAN, they were using Brooks' second system property

where he advises "plan to throw one away" [BRO 75 I. By

building a first prototype in FORTRAN, mistakes would

undoubtedly be made. By planning on discarding the

prototype rather than patching it to correct errors, the
ultimate FDAS system should be more reliable and better

structured - even if it did not turn out to be cheaper.

This by itself is a valuable property, although it is not

clear that it is a measurable one on most projects.
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A more important aspect of a FORTRAN imple-

mentation (at least with respect to this paper) is that the

FDAS prototype was s "typical" FORTRAN project.
Hence its life cycle characteristics sad the data that were

collected could be compared with many other projecLs in
the NASA database. This would not have been possible if

some other mechanism (e.g., simulation package of some

sort) were used.

In the next section, the prototype wli] be evaluw_ed.

However, here are some o/' our general conclusions. The

handling of requirements differed from • production sys-

tem; FDAS requirements were incomplete when design

began. UnJlke previous projects, they were not stated

precisely because aspects of the. system were still an open

subject during development IZEL 84]; even identifying

the potential user community and its impact on the user

interface and its effect on "usumed computer experience"

w-- still being considered. Dates for completion of each

phase were more flexible than in the historical data and

milestones were less rigid than in • production develop-

ment. During other phLses, requirements were generally
modifiable which in turn affected "q activities in each

phi.yr.

More time was spent in design, than is usual for a

typical project. Unlike other NASA projects, an exten-

sive review process took place almost weekly as design

decisions were made and altered. The coding and testing

efforts had no formal review. Although status meetings

were held almost weekly, the developers placed less

emphasis on testing than with a production system; and

sincethe prototype had • very limited lifetime,features

lhst seemed well understood hut cumbersome to imple-

ment were deleted from the requirements. According to

the lanaireport, coding took lesstime than in previous

projectsbut testing did consume the same amount of

effort.Very littleeffortwas spent on acceptance testing.

sincethe effectivelifeof the prototype was short.

4. Evaluation of Prototype

In • manner similar to the 13 other NASA projectS,

the FDAS project was analyzed by ph_es and activities
• s_ag data in the gEL database.

4.1. Phase Analysis

Data collection based on phases is shown in Table 6.

The effort expended for design, coding, and testing were

¢°mL'arabie. but notice that acceptance testing ws,* only
1-3¢7 of the prototype effort, but 12.7c_ in the historical

d_:a. %*,3_b a limited lifetime, reliability ws_ a limited
f*atur_. As long as the system worked for evaluation, it

_*_ adequate. In addition, integration testing took 10%

m Jre e/]_rt (25,_ compared to 16%) in the prototype.

&%ebelieve this was mostly due to "schedule s lippage" as
the eomplexhy of the prototype caused -ct]vlties to he
drIayed until the end.

DEVELOPMENT EFFORT BY PHASE DATE
(13 Pmjeem va Prototype FDAS)

PROJECT DESIGN CODE INTEC. ACC.TST

NUMBER {%) (_) ACT.(_) {q_}

t 20.8 _.S le.S 243
2 t6.2 48.4 19.3 1fl2
3 21.8 47.0 17.4 12.9
4 35.0 39.5 24.5 0.1
5 18.2 88.8 13.0 0.0
6 163 48.6 109 24,3
7 tgO _,4 14.0 15,7
8 22,g 48.4 13.0 15.8
9 228 68.3 8.1 I.I

1O 24.4 44.6 20.2 108
II 22.7 394 21.4 165
12 18.0 $3.1 109 lg.l
13 2S.2 43.5 20.1 82

Averal[e 22.0 49.2 16.2 127

FDAS 270 45.3 26.4 1.3

Table {$,Software Development Effort by Pbue

4.2. Activity Analysis

In the previous subsection, we viewed effort by

phase date. Table 7 displays the actual activities of

design, coding and integration test effort independent of

phase. In this case the results differ. Usually during the

design phase, coding and testing activities begin_ on some
modules, and in the code and unit test phase, •dditional

design activity continues. Integration testing begins as

soon as coding and unit testing of s component com-

pletes. Similarly, during the testing phase, any errors

that were uncovered might require substantial redesign

and recoding. Comparing with Table 6, we discover that

most NASA developments have additional design effort

later in ,,he llfe cycle to raise total design effortfrom 22%

to 25.6_'0. In the FDAS case, total design dropped from

27a_ to 25v_, meaning that activities other than design

occurred in the design phase, in both cases, activities

other than coding occur during the coding phase since

actual coding activity was only 30.5_o and 17.6,°"o
respectively, as opposed to the 45÷°_ of effort of the cod-

ing phase (Table 6).

Comparing FDAS with the 13 other developments,

design effort is comparable at 25_"_, but the code and unit

test effort and the integration test effort were different.

Due to the wide vari•billty of the "other* category of

Table 7, Table 8 presents the same data as relative per-

cent for Design, Code, and Integration testing only. This

shows the differences more clearly.

No formal review was performed on the prototype

during coding and unit testing, l_cau.se of the decision
to delete hard-to-build but understood features that did

11
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)EVELOPMENT EFFORT BY ACTD/1TY
(13ProleC_ vs Prototvvq FDAS)

PROJECT DESIGN CODE
hn.rM ACT (%) ACT (_)

! 1T.4 164

2 301 394
3 2tl.3 20 3
4 2T,3 21,T
S 31,0 35 $
6 14 9 21 •
T 20S 23_9
• 11.0 13 9

9 31 • 436
IO 389 3'?3
11 29 3 31 0
12 237 46 S
13 326 36 3

Aver*is 25 • 30 S
FDAS 2S O IT S

IN ALL PHASES

INTEO

ACT l_)

99
208
19 3
00
94

24,0

14.•
93

189
61

IT 2
24 0
IS•

]SO

25 I

T*tl* 7, S_twm D_dopmemt F_4o_ by A_uv_y

OTHER
ACT (%]

_3
g,7

342
380
24 1
392
3OO
6,58

64
18 4
225

59
15 6

?S g

32 3

not effect the FDAS evaluation, coding wu quite

straightforward. Most of the euy coding wu completed

in a rather short time, and the more di/_cult coding

aspects were simply not implemented. As Tab[e 8 ind6

ares, at 26% coding, FDAS had the lowest relative cod-

in K effort of any of the 14 meuured projects. The next

lowest wu 30.8_o and the averaKe over all 13 wes 42.2_0.

In addition, while in most projects the design and

integration testing efforts were le_ than the coding

activity, in FDAS both were almost 50% greater than for

coding (about 37% for each compared to 26% for cod-

ing).

PER CENT EFFORT IN EACH PHASE

(13 Proie¢_ vs Prototype FDAS)

PROJECT DESIGN CODE&IJNIT INTEG.

ACT(%) ^CT(_) At'T(%)
t 39.9 37.s 22.e
2 2.3 43.7 23.0
3 39.9 30.8 29.3
4 44.0 44.3 Ogl

5 40.8 49.8 12.3
9 24.8 35.9 39 .S
7 2.1.3 42.8 23.6

8 32.2 40.7 27.1

i0 40.8 45.7 07.5
11 37.8 40.1 22.1

12 B.2 49.4 25.5
13 38.8 430 18.4

Averqe 36.2 42.2 21.8

F'DAS 36,9 26.0 37.1

Tsbh SJ Relative Activity

This •pparent short circuiting of coding, however,

appeared to have s detrimental effect on testing, which

took a relative 37.1% of effort u opposed to 21.67o on

other projects. Only one other project (_) took as much

effort (30c70) and from Table I project 6 was the most

ccxstly, where you might expect an excessive need for test-

inK.

Based on the original productivity rate of 1.4 sourw

lines of code (SLOC) per hour on most NASA project s

[BAS 81J, FDAS with a size of 33,087 SLOC had •

productivity rate of 2.4 SLOC per hour. (Note: the aver-

age project size of 57,890 SLOC of Table I cannot simply

be divided by the average effort of 13,552 hours sines

most NASA projects reuse some code from previous sys-

tems. Table I is total system size, and the productivity

rote is for new lines of code.)

4.2.1. Design Effort

A true picture of development can be achieved by

investigating actual activity during each phase.

Although design is supposed to occur principally during

the design phase, for both the 13 older projects and the

FDAS prototype a comparable one half of the total

design effort occurred during the design phase, and equal

amounts were distributed through the rest of the I_fe

cycle (Table g). This repeats Table 3 in more detail.

Only 2% of the design of FDAS occurred during the

acceptance test phase in the prototype, principally

because the FDAS acceptance testing phase wu so short

and the few errors that were found did not get

redesiKned tad corrected. For the historical datL the

(5.4% of desiKn occurring during acceptance testing

represents errors found in testing that required source

code to be redesigned.

DESIGN ACTIVITY EFFORT IN EACH PHASE

f]3 _roieca vs Prototvoe FDAS 1

I

2

3

4
$

8
7

8
9

10
11

12
13

Aver,e

F D/C

DESIGN CODE

PHASE(,_) PHASE(_]

41.8 33.9
53.8 31.2

33.3 37.1
45.3 32.9

17.4 69.1

58.9 30.7

63.9 15,3
28.1 50.9

81.9 38.2
57.8 27.2

58.7 13.7
58.9 32.8

50.$ 24.7

492 34.1

40.8 28 g

_TEG.

'r£ST{_}

10.0

9.2

19.7
22.0

13,5

43
6.9

[1

O0
7O

1867
5.9

11.9

103

19.8

ACC.TST.

PHASF_%

14.3
90

9.9

0.I

00
62

14.1

80

0.0
6.0

10.9

2.4

29

84

1.7

Td_l. 0. D.ip Act.iq, Effort

4.2.2. Code & Unit Test Effort

The code & unit test artivities in the prototype,

however, represent a departure from the older projects

(Table I0). In moat developments, about 7% of the cod-

ing is completed during design (although it v_ried from

0% to 22% in the 13 other projects). Implementation

often begins as some components become completely

specified. However, with FDAS, due to its greater uocer-
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talnty, no eoding occurred until the development team

; really _ncierstood the design, i.e., until the coding phase

began. For most projects, 70°_ of the tots] code and

unit test effort is [n the cocl[n& phase, but in the pinto-

type almost 06°_ of the effort W'L" during coding, Coding

o/ten extends through _:ceptanee testing, but with

FDAS's relatively light acceptance test, few critical emirs

were found so llttie effort wu spent in recod[ng during

test. Coding and testing need to be cached out on the

full system for every change or modiKcatlon of the

deign, but in the prototype it was not necessary to code

the new design.

CODE • TEST ACTIVITY EFFORT IN EAG_I PHASE

PROJECT

1

2

$

4

5

fl

7

|

9

t0

It

12
13

Avera_

FDAS

,[13 Proi_u vs protot],

DESIGN CODE

PHAS_%) PHASe%)

1.4 7S .$
0.0 72.11

_ 54.2

1($.4 IrdLS

21.2 (IS.7
0.5 7T.1
1.3 73.9

14.7 54.7

5.2 91.1

0.0 7:L0

9.2 -- 7O$

0_1 14.9
4it 13.0

S.9 70.3

0.0 95,9

. rD_Sl

INTEG

lt.ll

t9.T

11.9
lS.l

10.1
11.3

154

21.0
3.1

20,1
9.3

_.9

lS.9

4.1

ACC.TST,

9.1

7.5

9.11

0.1
0.0

10.9
9.2

9.7

0.8
4.$

1.2

19.6
4.9

6.9

0.(3

TAble I0. Code • Ulit Tm_ Activity _llm, t

4.2.3. Intelratlon Trot Eft'oft

Integration test effort Is distributed through all

phases in the collected projects with more effort (43%)

duriol; the code & unit phase than in either the integr_

tion phase (26_) or the acceptance test phase (29%)
(Table 11). In general, almost 50°_ of all integration test-

ing Occurs during design and coding phases. In FDAS,

this effort was delayed with about two-thlrds of all

integration activities in the integration phue. ThIs was

due to delaying the integration until moil pieces of the

system were completed.

4.2,4. Other Activity Effort

The Other category conslsta of ILeti'_tles such as

travel, completion of the d•ta collection forms, meetlnf_,

or tr6ninl6 While these activities are often Ignored In

most life cycle studies, the cesta are significant. Typi-

cally, about 29¢'_ of activities are in this category and of

the 13 measured projects, "other" consumed more than

one-thlrd of the effort on 6 of them (Table 7). FDAS

used a comparable 32_o "other'. As seen in Table 12,

the prototype devoted more effort, to the deslgn phs_,

mainly for meeting, traveling, and train;ng due to the

extensive unknown quality of the design at the beginning

DqTEGILATION ACTIVITY EFFORT IN EACH PHASE

j]3 Prejeeta v, Prototype FDAS)

PROJECT DESIGN

! 0.0

2 0.0

(I.I

4 21_
5 ML4
($ !.0

7 0_
I 2.9

9 0_
10 0.0

U 0_

12 0.t
15 1,_

Avera_

FD_

4.7

0.O

T "_L" It.

CX$DF_UNIT

P_ZA_, Z(%)

17.11

45.2

53.9

$g.3
?1.0

40.9
&4.1

M.4

_.l

M.4

32.7

49.5

434

34.$

I_t_s.s_¢ Trot Activ*W

INTEG. ACC.TST.

274 _t.7

_. 1 24.7
21.1 18.9

39.7 0.0
0.6 0.0

17.9 40.$
2_.3 19.2

19.2 44,1
29.2 4 4
41.5 35.5

35.1 211.5
224 44.9

_I.II 20.2

261 25.8

of thet_k. The acceptance t4_t activity is low for the

similar reason that the prototype system had few users of

short duration and therefore no detailed tests. On the 13

collected project& the Other activities are distributed

more uniformly during ,,,,'l phases, including the steep-

tahoe test where there is • need to test before _ctually

turning the system to the u_er.

OTHER AC'£1VITneS EFFORT IN EACH PHASE
(13 Pro_ect_ vs Prototyne FDAS)

PROJECT
NUM

1

2
5

-4

S

9
7

8

9
tO

11
12

t_

Avers4[e

DESIGN _$DEkTST

PH_E{%} pH._%}

0.0 9.1

21.7 47.8

49.2 _0.2

11.-0 9T.7
18.2 44.2

14.4 S1.6
28.5 47.7

15.9 _,_

12.4 $0.2
21.4 $2.2

47.3 46 8
42.5 30.0

23.1 41.2

4_.1 $_9

LNTEG ACC.TST.

TEST[%I PHAS_%I

18.1 _,.$

215.4 94.0
1(I.B 13.7

23.8 0.0
21 .$ 0,0

g.0 28.7

14.5 lgs

11.4 14.4

18.T 0,0
35.9 21.$
I8.g 27.6

4.6 1.$
12.7 14.g

17 8 17.9

15.7 0.3

Table 12. Other Acuvitie_ E[m't

S. Conclusions

In this paper we have collected data on many

software projects developed at NASA/GSFC and com-

pared them with a new prototype deve)opment. By using

data from the SEL databa._e, it appears clear that the

software development process does not fol|ow the water°

fall Life cycle. It _]so appears that the pr_3totype develop-

13
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ment follows a similar life cycle paLtern u otner _d'tware

projects. Although a single data point (the prototype)

does not give definitive answers, it does give some trends

that am d in_

Both approachl have similar mffware llfe eyelet

but the effort dkst_ibuted over each phase differs. The

ending in tim prototype wu matt ad hoe, therefore test-

ing became more involved. Integration t_ting was

harder in the prototype because of the false mumption

that reliability wu not a central issue. The production

developments devote more effort in ¢¢xilng than in testing

(Table 7).

While not inexpensive, the prototype appears to be

sueeeest'uL Several design decisions turned out to be

partially faulty when the prototype wu test_l. The

human computer interface has been redesigned.

In fact., alter completion of the prototype, several

screen simulation systet_l were u_ed to model a user
interlace, and a more hlerarehical menu model was

developed. Without the FDAS experience, NASA might

have implemented t syst, m where usere h_l no real

experience until the large implementation would be too

far along to change adequately.

The underlying cxeeutlon model of FDAS became

better understood. As s souse code control system, the

separation of the FDAS code and the nut's flight dynam-

ic_ application code became clearer. Mar, user programs

would be FORTRAN (at le'rq initially);, however, other

languages (e.g., Pueal, Ada) would be used in the future,
while it would not matter to the u_r In what language
FDAS was itmff writ_n.

FDAS included t prototype preprocessor to add

abstract data types to FORTRAN. This preprocessor

wu initially tied directly to the FDAS implementation.

It is now somewhat independent to allow for other

preprocessors later. The FORTRAN preprocessor, call

OPAL, for Object Programming Applicatio_ Language

[CSC 86_, is a more r_ional extension of FORTRAN
with data structures useful for flight dynamics applies-

ainu, auch u vectors, matrices, and quaternlou. The
decision wu also mule to move away from FORTRAN,

and the system italf is being implemented in Ada,

although it will initially process FORTRAN application
code.

A new production FDAS implementation would

avoid many potential pitfalls discovered via the proto-

type. Currently the production version of FDAS is under

development, and its design hu benefited greatly from

the earlier development. We will have to wait for com-

pletion before fully eva/uating this prace._. It is quite

clear, however, that FDAS will be a much better product

that if the prototype had not been built.

Prototyping probably increues the c_t of the sys-

tem, but it greatly increases itsquality. It gives a flavor

to the end user of what the system can do and bow it

can perform the task, especially in a ooafamiliar environ-

meat. It provides the developer_ a "second system" effect

for perfeain& It design.
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